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Boundary Layer (BL) Concept

Viscous flow over a flat plate

• In 1904 Ludwig Prandtl proposed the concept of boundary layer (BL).

• BLs are the regions where viscous effects are dominant. They develop over solid
surfaces, in the wake regions of bodies, mixing layers and jet flows.

• Outside the BLs velocity gradients are low and the flow can be treated as inviscid 
(frictionless).

𝑈
𝑈
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layers

Inviscid flow over a flat plate
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BL and Reynolds Number (𝑅𝑒)

𝑅𝑒𝐿 =
Inertia forces

Viscous forces
=

(mass) × (acc. )

(visc. ) × (vel. grad. ) × (area)

𝜌𝐿2𝑈2

𝜇𝑈𝐿
=

𝜌𝑈𝐿

𝜇
=

𝑈𝐿

𝜈

Low 𝑅𝑒

High 𝑅𝑒 flow

• Inertia forces are dominant over a 
large portion of the flow field.

• BL is thin.

Low 𝑅𝑒 flow

• Viscous forces can be felt over a 
broader region.

• BL is thick.

High 𝑅𝑒

𝐿
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BL and Reynolds Number (cont’d)

• For blunt (not streamlined) bodies, like a cylinder, formation of wake region and 
BL separation depend on 𝑅𝑒.

𝑅𝑒𝐷 = 0.1

• Viscous effects are important over a very large 
domain. It is not proper to talk about a BL.

• Streamlines are similar to those of potential 
flow.

• Fluid inertia is too high to follow 
the contour of the cylinder.

• Separation occurs at point A. 
Circulation bubble forms behind.

• BL is very thin and attached at 
the front.

• BL separates at the rear side.
• There is a large wake region 

behind.

Edge of the BL

𝑅𝑒𝐷 = 50

A

Wake

𝑅𝑒𝐷 = 105

A



2-5

BL and Reynolds Number (cont’d)

Exercise : What is the Reynolds number for an inviscid flow? How does such a flow 
over a flat plate look like?

Exercise : Estimate the Reynolds numbers for the following flows

a) Car traveling at a speed of 100 km/h.

b) An airliner travelling at a typical cruising speed and altitude.

c) Golf ball hit hard by a professional golfer.

d) Fuel injected into an internal combustion engine’s cylinder.

e) Blood flowing in human aorta and air flowing in human trachea.

Exercise : Think about problems of engineering importance where the Reynolds 
number is very low (in the order of unity).
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BL over a Flat Plate

• As the BL grows, small disturbances in the flow also grow.

• At some point they can no longer be damped by the viscous action and  transition 
to turbulence takes place.

• Growth rate of turbulent BL is larger than that of laminar BL.

• In a turbulent BL, due to enhanced mixing, fluid with high momentum comes 
closer to the flat plate. Velocity gradient and therefore shear stress at the plate 
becomes higher compared to those of laminar BL.

Warning
This drawing is out 
of scale. Typically 
BLs are very thin.

𝑈 𝑈

Laminar BL

𝑈

Turbulent BLTransition
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BL over a Flat Plate (cont’d)

• Transition to turbulence can be checked with the local Reynolds number

𝑅𝑒𝑥 =
𝑈𝑥

𝜈

• Critical 𝑅𝑒𝑥 for transition to turbulence on a flat plate is accepted to be  5 × 105.

• Factors that affect turbulence transition are

• initial intensity of upstream turbulence

• roughness of the plate

• condition (sharpness, smoothness) of the leading edge

• flow unsteadiness

• any other disturbances such as vibrations, acoustic noise, heat transfer, etc.

Laminar BL Turbulent BLTransition

𝑥
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BL Thickness (𝛿)

• BL thickness (𝛿) is the distance from the plate where the velocity reaches to 99 % of 
the free stream velocity 𝑈.

• 𝛿 is a function of 𝑥. It increases with 𝑥.

Exercise : By considering a proper control volume inside the BL, show that the 
dashed line denoting the edge of the BL is NOT a streamline. Draw streamlines on 
the figure given above.

𝑈

𝛿

𝑥

𝑈

𝛿
0.99 𝑈

0.99 𝑈



2-9

BL Displacement Thickness (𝛿∗)

• 𝛿∗ is the distance a solid surface should be imaginarily moved into an inviscid flow so 
that the created mass flux loss is equal to that caused inside the BL of the actual 
viscous flow.

𝛿∗ =  
𝑦=0

𝛿

1 −
𝑢

𝑈
𝑑𝑦

𝑈

𝛿𝑦 𝑢(𝑦)

 𝑚𝑙𝑜𝑠𝑠 =  
𝑦=0

𝛿

𝜌 𝑈 − 𝑢 𝑤 𝑑𝑦

Surface is moved 
imaginarily into the 
flow by an amount 𝛿∗𝛿∗

𝑈

Constant 
width of 
the surface

 𝑚𝑙𝑜𝑠𝑠 = 𝜌 𝑈 𝛿∗𝑤
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BL Displacement Thickness (cont’d)

• Alternative physical interpretation of 𝛿∗ is the shift of the flow (deflection of the
streamlines) away from the surface due to the presence of the BL.

Consider the mass 
conservation for the 
control volume ABCD.

Shaded areas should be 
equal, which gives the 
equation for 𝛿∗.

 𝑚𝐴𝐵 = 0

 𝑚𝐶𝐷 = 0

 𝑚𝐴𝐷 =  𝑚𝐵𝐶

𝑈

𝛿

𝑈

Deflected
streamline

𝛿∗

A B

D

C
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BL Displacement Thickness (cont’d)

Exercise : A laboratory wind tunnel has a 0.5 x 0.5 m2 square test section. BL
velocity profiles are measured at two axial locations and displacement thicknesses 
are determined. At section 1, where the freestream speed is 30 m/s, the 
displacement thickness is 1.5 mm. At section 2, located downstream from section 
1, displacement thicknesss is 2.5 mm.

Calculate the change in static pressure between sections 1 and 2.

𝑤 = 0.5 m

𝑈1 = 30 m/s

𝛿1
∗ = 1.5 mm

𝛿2
∗ = 2.5 mm

𝑝1 − 𝑝2 = ?1

2

𝑤

𝑤
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BL Momentum Thickness (𝜃)

• 𝜃 is the distance a solid surface should be imaginarily moved into inviscid flow so 
that the created momentum flux loss is equal to that caused inside the BL of the 
actual viscous flow.

𝜃 =  
𝑦=0

𝛿 𝑢

𝑈
1 −

𝑢

𝑈
𝑑𝑦

Surface is moved 
imaginarily into the 
flow by an amount 𝜃

𝑈

𝜃

𝑈

𝛿𝑦 𝑢(𝑦)

momentum loss = 𝜌𝑈2𝜃𝑤momentum loss =  
𝑦=0

𝛿

𝜌𝑢 𝑈 − 𝑢 𝑤𝑑𝑦

Constant width 
of the surface



• Consider steady, incompressible flow over a surface.

• Continuity and Navier-Stokes equations are

Continuity ∶
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0

𝑥 Navier−Stokes ∶ 𝜌 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

𝑦 Navier−Stokes ∶ 𝜌 𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2

• In 1904 Prandtl simplified these equations inside a BL using the following

• 𝑅𝑒 number is high (𝑅𝑒 ≫ 1) and BL is thin 𝛿 ≪ 𝐿 .

• Vertical velocities are small (𝑣 ≪ 𝑢)

•
𝜕

𝜕𝑥
≪

𝜕

𝜕𝑦
(changes in 𝑦 direction are much more rapid than those in 𝑥 direction)
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Prandtl’s BL Equations Prandtl’s BL Equations (cont’d)

• An ‘‘order of magnitude analysis’’ using Prandtl’s simplifications gives (see the handout)

Continuity :
𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0

𝑥 N−S : 𝜌 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= −

𝜕𝑝

𝜕𝑥
+ 𝜇

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2

𝑦 N−S : 𝜌 𝑢
𝜕𝑣

𝜕𝑥
+ 𝑣

𝜕𝑣

𝜕𝑦
= −

𝜕𝑝

𝜕𝑦
+ 𝜇

𝜕2𝑣

𝜕𝑥2
+

𝜕2𝑣

𝜕𝑦2

• IMPORTANT: Third equation says ‘‘Inside the BL pressure does not change in the 𝑦
direction’’.

• IMPORTANT: Inside the BL, 𝑝 = 𝑝(𝑥) only. Pressure inside the BL is treated to be 
known, which is something imposed by the outer inviscid flow.

small

small small small small
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Pressure Change Inside a BL

• If the freestream velocity (𝑈) outside the BL is constant

• Euler eqn. for the outside flow tells that outside pressure is also constant.

• Pressure inside the BL is also constant.

• Inside the BL there is a balance of inertia and viscous forces.

• If the freestream velocity (𝑈) outside the BL changes in 𝑥 direction

• Pressure outside and inside the BL will also change in the 𝑥 direction.

• Inside the BL there is a balance of inertia, viscous and pressure forces.

𝑥

𝑦 Pressure is 
constant in 𝑦

𝑝outside depends on 𝑈 as given by the
Bernoulli (or Euler) equation

𝑑𝑝

𝑑𝑥
= −𝜌𝑈

𝑑𝑈

𝑑𝑥
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Pressure Change Inside a BL (cont’d)

Flat Plate

𝑈 is constant

𝑝outside is constant

𝑝 inside the BL is constant

Diverging Duct

𝑈 is decreasing

𝑝outside is increasing

𝑝 inside the BL is increasing in 
the 𝑥 direction

Inside the BL 𝑝 = 𝑝(𝑥)

𝑥

𝑦
𝑝 = constant

𝑈 is constant

Exercise : How will the pressure inside the BL vary for flow over a cylinder?

𝑈 is decreasing
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Pressure Change Inside a BL (cont’d)

• Static holes are used to measure pressure 
distribution on a wall.

• Since 𝑝 does not change in the 𝑦 direction 
inside the BL, the measured pressures are 
equal to the ones at the edge of the BL.

• Therefore an inviscid Euler solution or even 
a potential flow solution for the flow outside
the BL may predict correct pressure
distribution over the surface.

• This is the reason why inviscid flow solutions 
over streamlined bodies such as airfoils can 
predict the lift force accurately.

• It is not the case for airfoils at high angle of 
attack or for blunt bodies due to flow 
separation. BL theory is not valid after the 
separation point.

-6

-4

-3

-2

-1

0

-1
0.0           0.2            0.4            0.6            0.8           1.0

Potential Flow
Experiment

𝐶𝑝

Pressure distribution on an airfoil

𝑈∞

Çengel’s book

𝑥𝛿

𝑦

𝑝1

𝑝2

𝑝1 𝑝2

BL

Presssure taps
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Blasius’ Exact Solution of BL over a Flat Plate

• In 1908 Blasius, a student of Prandtl, obtained the analytical solution of the following 
BL equations for laminar flow over a flat plate with zero pressure gradient.

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
= 0

𝜌 𝑢
𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
= 𝜇

𝜕2𝑢

𝜕𝑦2

• He used the following boundary conditions

• At  𝑦 = 0 :  𝑢 = 0 & 𝑣 = 0 (No-slip)

• As 𝑦 → ∞ : 𝑢 → 𝑈 (Asymptotic approach to free stream velocity)

• Blasius’ solution is valid for laminar flow over a flat plate with no pressure gradient.

• The solution uses streamfunction and a similarity transformation. You are NOT 
responsible for its details.

𝑑𝑝/𝑑𝑥 is zero for flat plate
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Blasius’ Exact Solution (cont’d)

• Blasius cleverly used the fact that velocity profiles at all 𝑥 sections are similar if 
proper nondimensional parameters are used.

𝑢/𝑈

𝜂

5

1

Nondimensional 𝑢

Nondimensional 𝑦

𝜂 = 𝑦 𝑈/𝜈𝑥

At any 𝑥 location, 𝑢 reaches 
0.99𝑈 at 𝜂 ≈ 5.

Similar

𝑥

𝑈

𝑈

𝑢1(𝑦) 𝑢2(𝑦)

𝑦
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Blasius’ Exact Solution (cont’d)

• Velocity profile of Blasius’ exact solution has no analytical expression.

• The solution is usually obtained by a numerical solution and the results are given 
as a table.

Experiment

Blasius solution

𝑢/𝑈

0    0.2   0.4  0.6   0.8    1

𝜂

6

5

4

3

2

1

0

Çengel’s book



• 𝑢 reaches 0.99𝑈 at 𝜂 ≈ 5.

• In other words when 𝜂 becomes 5, 𝑦 becomes 𝛿.

• Using the definition of 𝜂, BL thickness at any 𝑥 location becomes

𝜂 = 𝑦 𝑈/𝜈𝑥 → 5 = 𝛿 𝑈/𝜈𝑥 → 𝛿 = 5
𝜈𝑥

𝑈

• Using local Reynolds number definition, 𝑅𝑒𝑥 = 𝑈𝑥/𝜈

𝛿

𝑥
=

5

𝑅𝑒𝑥
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Blasius’ Exact Solution (cont’d)

Most important result of 
Blasius’ solution

𝛿 grows with 𝑥

𝛿1

𝛿2

𝑥

𝑦

𝑥1 𝑥2

2-22

Blasius’ Exact Solution (cont’d)

• BL displacement thickness at any section

𝛿∗ =  
0

𝛿

1 −
𝑢

𝑈
𝑑𝑦 =

1.721 𝑥

𝑅𝑒𝑥

• Momentum thickness at any section

𝜃 =  
0

𝛿 𝑢

𝑈
1 −

𝑢

𝑈
𝑑𝑦 =

0.664 𝑥

𝑅𝑒𝑥

𝛿∗ ≈ 0.35 𝛿

𝜃 ≈ 0.14 𝛿

𝐻 = 𝛿∗/𝜃 ≈ 2.6

Shape factorÇengel’s book

𝛿∗(𝑥)
𝜃(𝑥)𝛿(𝑥)

𝑥

𝑦

𝑈

𝑈

2-23

Blasius’ Exact Solution (cont’d)

• Shear stress at the wall

𝜏𝑤 = 𝜇  
𝜕𝑢

𝜕𝑦
𝑦=0

=
0.332 𝜌𝑈2

𝑅𝑒𝑥

• Local skin friction coefficient (dimensionless wall shear stress)

𝐶𝑓𝑥 =
𝜏𝑤

𝜌𝑈2/2
=

0.664

𝑅𝑒𝑥

• As 𝑥 increases 𝜏𝑤 decreases. 𝜏𝑤 ~ 1/ 𝑥

𝑥 High
𝜕𝑢

𝜕𝑦
→ High 𝜏𝑤 Low

𝜕𝑢

𝜕𝑦
→ Low 𝜏𝑤

At 𝑥 = 0,  𝜏𝑤 shoots to infinity, 
which is unphysical. This is 
because at the leading edge of 
the plate Prandtl’s BL 
simplifications are not valid.

𝑥

𝜏𝑤
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Blasius’ Exact Solution (cont’d)

• Drag force acting on one side of a plate of length 𝐿 and width 𝑏

𝐹𝐷 =  
𝑥=0

𝐿

𝑏𝜏𝑤𝑑𝑥 =
0.664 𝜌𝑈2𝑏𝐿

𝑅𝑒𝐿

where 𝑅𝑒𝐿 = 𝑈𝐿/𝜈 .

• Overall skin friction coefficient (dimensionless drag force)

𝐶𝑓𝐿 =
𝐹𝐷

𝜌𝑏𝐿𝑈2/2
=

1.328

𝑅𝑒𝐿

Exercise: A wind tunnel’s square test section is 1 m long. Assuming uniform 
laminar flow at the inlet of the test section determine the maximum allowed air 
speed such that the BL remains laminar inside the test section. For this air speed 
determine 𝛿, 𝛿∗ and 𝜃 at the exit of the test section.

𝐿

𝑏

𝑈
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Von Karman’s Approximate Momentum Integral Approach (MIA)

Momentum Integral Approach (MIA)

• both laminar and turbulent BLs

• over flat and curved surfaces

• for any known 𝑈(𝑥) and the corresponding 𝑝outside(𝑥)

• but needs a velocity profile guess and provides approximate 
results

Blasius’ Exact Solution

• laminar BL

• over a flat plate

• for zero pressure gradient 
𝑑𝑝

𝑑𝑥
= 0
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MIA for a Flat Plate

• Consider 2D, steady, incompressible flow over a flat plate.

• MIA is based on the mass and momentum conservation for a differential control 
volume inside the BL.

• Continuity equation :

• 𝑥–momentum equation :  𝐹𝑥 = Mom. flux𝐴𝐵 + Mom. flux𝐶𝐷

 𝑚𝐴𝐵 +  𝑚𝐶𝐷 = 0

For the flat plate, pressure is constant 
everywhere and the only external force is 
the drag force.

𝑥
𝑦

A D

C

B
𝛿

𝐹𝑑𝑟𝑎𝑔

• Following the derivation given in the handout, we get

𝜏𝑤 = 𝜌𝑈2
𝑑𝜃

𝑑𝑥

• This is von Karman’s momentum integral equation.

• This version is valid for flow over a flat plate, i.e. 𝑈 and 𝑝 are constant, not changing 
with 𝑥. It is valid for both laminar and turbulent BLs.

• To work with this equation we need to start with an assumed velocity profile inside 
the BL.

• Then we can calculate all BL parameters such as 𝛿(𝑥), 𝜃(𝑥), 𝜏𝑤(𝑥), etc.

• The power of the approach is that it gives acceptable results even when the assumed 
velocity profile is rather crude.
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MIA for a Flat Plate (cont’d)
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Using MIA for Laminar BL over a Flat Plate

• Step 1. Assume a suitable velocity profile for 𝑢(𝑦) inside the BL

• For laminar BLs polynomials of different degrees or trigonometric functions can be 
used.

• For example a quadratic polynomial profile inside a BL is

𝑢 𝑦 = 𝐴 + 𝐵𝑦 + 𝐶𝑦2𝛿

𝑈

Determine the constants 𝐴, 𝐵 and 𝐶 using three boundary conditions

• 𝑢 0 = 0

• 𝑢 𝛿 = 𝑈

•  
𝜕𝑢

𝜕𝑦 𝑦=𝛿
= 0

𝑢

𝑈
= 2

𝑦

𝛿
−

𝑦

𝛿

2

𝐴 = 0

𝐵 =
2𝑈

𝛿

𝐶 = −
𝑈

𝛿2
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Using MIA for Laminar BL over a Flat Plate (cont’d)

• Step 2. Express 𝜏𝑤 in terms of the assumed velocity profile.

• For laminar flows we can use 𝜏𝑤 = 𝜇  
𝜕𝑢

𝜕𝑦 𝑦=0
.

• For the parabolic profile of the previous page    𝜏𝑤 = 𝜇
2𝑈

𝛿
.

• Step 3. Use this 𝜏𝑤 in the momentum integral equation and determine 𝛿(𝑥).

• After finding  𝛿(𝑥) other details inside the BL can be computed.

• Following table provides a summary of results of MIA for various velocity profiles.

𝛿 𝑅𝑒𝑥/𝑥 𝐶𝑓𝑥 𝑅𝑒𝑥 𝐶𝑓𝐿 𝑅𝑒𝐿

MIA, Linear profile 3.46 0.578 1.156

MIA, Parabolic profile 5.48 0.730 1.460

MIA, Cubic profile 4.64 0.646 1.292

MIA, Sine profile 4.79 0.655 1.310

Blasius (exact) 5.00 0.664 1.328
2-30

Exercise : Use the MIA with linear velocity profile and obtain the numbers of the 1st

row of the previous table.

Exercise : Air flows at 𝑈 = 3 m/s past a flat plate with a length of 𝐿 = 2 m in the 
flow direction. Assuming zero pressure gradient and a laminar BL with

a) linear velocity profile

b) parabolic velocity profile

c) cubic velocity profile

d) sinusoidal velocity profile

determine 𝛿 at 𝑥 = 𝐿. Also calculate the drag force acting on the plate. Compare 
the results with Blasius’ solution. Use the values of previous slide’s table.

Using MIA for Laminar BL over a Flat Plate (cont’d)
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Using MIA for a Turbulent BL

• For turbulent flows power law velocity profile is more appropriate

𝑢

𝑈
=

𝑦

𝛿

1/𝑛

where 𝑛 =  

7 5 × 105 < 𝑅𝑒𝑥 < 107

8 107 < 𝑅𝑒𝑥 < 108

9 108 < 𝑅𝑒𝑥

• Power law profile represents time averaged profile of an unsteady turbulent flow.

• Compared to the Blasius’ profile, power law profiles are fuller, with higher speed 
flow close to the wall.

𝑦/𝛿

𝑢/𝑈

1

1

Time 
averaged 
turbulent 
profile

1

0       0.2     0.4     0.6     0.8      1

0.8

0.6

0.4

0.2

0

Blasius

Power law, n=7

𝑦/𝛿

𝑢/𝑈 2-32

Using MIA for a Turbulent BL (cont’d)

• Power law velocity profile approximates the time averaged 𝑢 velocity nicely.

• But it gives infinite slope at the wall, therefore it can not be used to calculate 𝜏𝑤.

• Instead, experimentally obtained expressions are used, such as

𝜏𝑤 = 0.0225𝜌𝑈2
𝜈

𝑈𝛿

1/4

Exercise: Using power law profile with 𝑛 = 7 and the above 𝜏𝑤 relation in the MIA, 
obtain the following relations

𝛿

𝑥
=

0.37

𝑅𝑒𝑥
1/5

𝐶𝑓𝐿 =
0.072

𝑅𝑒𝐿
1/5

• Note the difference between laminar and turbulent 𝛿’s.

Laminar     :   𝛿 ~ 𝑥1/2

Turbulent  :  𝛿 ~ 𝑥4/5

A turbulent BL 
grows faster than 
a laminar one.
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Drag Force Calculation using Integral Formulation (similar to MIA)

Exercise: (Fox’s book) A developing boundary layer of standard air on a flat plate is 
shown below. The free stream flow outside the boundary layer is undisturbed with 
𝑈 = 50 m/s. The plate is 3 m wide perpendicular to the diagram. Measurements at 
section BC revealed that the velocity profile is close to power law profile with    
𝑛 = 7 and boundary layer thickness is 𝛿 = 19 mm. Calculate

a) the mass flow rates across surfaces AD, AB and BC.

b) the x-momentum flow rates across surfaces AD, AB and BC. 

c) the drag force exerted on the flat plate between D and C.

𝛿

𝑈

CV

𝑥

𝑦

A B

CD
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Pressure Gradient Inside a Boundary Layer

𝑑𝑈

𝑑𝑥
> 0 &

𝑑𝑝

𝑑𝑥
< 0

Pressure drops in flow 
direction (Favorable 
pressure gradient)

𝑑𝑈

𝑑𝑥
= 0 &

𝑑𝑝

𝑑𝑥
= 0

Pressure does not 
change with 𝑥 (Zero 
pressure gradient)

𝑑𝑈

𝑑𝑥
< 0 &

𝑑𝑝

𝑑𝑥
> 0

Pressure increases in flow 
direction (Adverse 
pressure gradient)

Fox’s book

𝛿

Region 1

𝑥

𝑦

Region 2 Region 3

Backflow

Separation point:  
𝜕𝑢

𝜕𝑦 𝑦=0
= 0
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Pressure Gradient Inside a Boundary Layer (cont’d)

•
𝑑𝑝

𝑑𝑥
= 0 : Fluid particles inside the BL slow down due to shear stress only.

Flow cannot separate from the surface.

•
𝑑𝑝

𝑑𝑥
< 0 : Pressure decreases in the flow direction (favorable pressure gradient).

Pressure force is in the flow direction. It helps the flow attach to the  
surface even stronger.

Flow cannot separate from the surface.

•
𝑑𝑝

𝑑𝑥
> 0 : Pressure increases in the flow direction (adverse pressure gradient).

Pressure force is in the opposite direction of the flow.

Fluid particles close to the wall with low momentum may come to a  stop    
or even move in the opposite direction of the main flow,  called backflow.

• Adverse pressure gradient is the necessary but not sufficient condition for separation.
Separation will occur if the adverse pressure gradient is high enough.

• BL theory is no longer applicable after the separation point.
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• Flow separation is generally undesired. It reduces lift force on an airfoil or 
increases drag force on a blunt body such as a sphere.

• In a diffuser it increases losses and results in poor pressure recovery.

• Turbulent BLs are more resistive to separation because, compared to a laminar 
one, velocities (and momentum) close to the wall are higher in a turbulent BL.

• Dimples on golf balls and turbulators on wings are used to promote turbulence 
and delay separation (We’ll come to this later).

Flow Separation

𝑢/𝑈

𝑦

𝛿

1

0
10
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Flow Separation (cont’d)

NCFMF filmshttp://wings.avkids.com/Tennis/Book/laminar-01.html

Separation over a stalled airfoil Separation in a diverging duct

www.onera.fr

Separation over a car A more streamlined concept car

www.germancarforum.com
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• Component of force acting on a body parallel to the direction of relative motion of 
the body and the surrounding fluid.

• In ME 305 we studied the dimensionless parameters for the calculation of drag 
force on a smooth sphere.

• Drag is a function of   𝐹𝐷 = 𝑓1 𝐷, 𝑈, 𝜇, 𝜌

• Buckingham Pi analysis resulted in

𝐹𝐷

𝜌𝑈2𝐷2
= 𝑓2 𝑅𝑒

• Left hand side is a nondimensional drag force. The result can be expressed by using 
the drag coefficient 𝐶𝐷

𝐶𝐷 =
𝐹𝐷

1
2𝜌𝑈2𝐴

= 𝑓(𝑅𝑒)

where the area 𝐴 = 𝜋𝐷2/4 for the above sphere.

Drag Force (𝐹𝐷)

𝐷

𝑈
𝜇 ,  𝜌

𝐹𝐷
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𝐶𝐷 =
𝐹𝐷

1
2

𝜌𝑈2𝐴

Drag Force (cont’d)

Frontal area Planform area Wetted area

• Previous slide says that 𝐶𝐷 is a function of Reynolds number only.

• When free surface, compressibility and surface roughness effects are included, 𝐶𝐷

becomes a more complicated function of

𝐶𝐷 = 𝑓(𝑅𝑒, 𝐹𝑟,𝑀𝑎, 𝜀/𝐿)
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• First we’ll only consider the simple and common case of  𝐶𝐷 = 𝑓 𝑅𝑒

• 𝐹𝐷 is composed of two components.

Drag Force (cont’d)

𝐹𝐷

Friction drag 

𝐹𝐷𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =  
𝑏𝑜𝑑𝑦

 𝜏𝑤 𝑑𝐴 Uniform
flow

direction

Pressure drag (Form drag) 

𝐹𝐷𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 =  
𝑏𝑜𝑑𝑦

 𝑝 𝑑𝐴 Uniform
flow

direction

• Obtaining functional forms of 𝜏𝑤 and 𝑝 distributions for a general flow over even 
simple shaped bodies is very difficult, if not impossible.

• 𝐹𝐷 (or 𝐶𝐷) calculations rely mostly on experimental data. 
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Drag Force (cont’d)

• Flat plate, when aligned parallel to the flow, is a perfectly streamlined body.

• 𝐹𝐷 on such a plate is purely do to shear forces. Pressure drag is zero.

• When the plate is perpendicular to the flow the extremely blunt case is obtained.

𝐹𝐷 = 𝐹𝐷𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛

𝐹𝐷𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 = 0

𝐹𝐷 = 𝐹𝐷𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝐹𝐷𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 0

Streamlines are 
almost straight

2-42

Drag Force on a Flat Plate

• Consider flow over a flat plate, with length 𝐿 and width 𝑏.

Blasius’ solution for laminar flow ∶ 𝐶𝐷 =
1.328

𝑅𝑒𝐿

(Slide 2−24)

von Karman’s MIA with 𝑛 = 7 profile : 𝐶𝐷 =
0.072

𝑅𝑒𝐿
1/5

(Slide 2−32)

Schlichting’s formula with transition at 5 × 105 : 𝐶𝐷 =
0.455

log 𝑅𝑒𝐿
2.58 −

1700

𝑅𝑒𝐿

Completely turb. flow on rough plate : 𝐶𝐷 = 1.89 − 1.62 log
𝜀

𝐿

−2.5

𝐶𝐷 =
𝐹𝐷

1
2𝜌𝑈2𝑏𝐿

𝐿

𝑏

𝑈

Note: Previously we 
used 𝐶𝑓𝐿 for flat plate. 

It′s the same as 𝐶𝐷 .
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• Experimental data is plotted.

• Very similar to the Moody 
diagram used for pipe flow.

• Laminar flow curve represents 
Blasius’ exact solution.

• Relative surface roughness
(𝜀/𝐿) becomes a factor in the 
turbulent regime.

• For high 𝑅𝑒𝐿 values
(completely turbulent regime)
𝐶𝐷 becomes independent of 
𝑅𝑒𝐿, i.e. roughness becomes 
the only defining parameter.

𝐶𝐷

𝑅𝑒𝐿

𝐶𝐷 for Flow over a Flat Plate

Munson’s book
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Drag Force on a Flat Plate (cont’d)

Exercise : A supertanker is 360 m long, has a beam width of 70 m and a draft of     
25 m. Estimate the force and power required to overcome skin friction drag at a 
cruising speed of 13 knot in seawater at 10 oC.

𝐷 = 25 m

𝑈

Water line (Blue part 
is under the water)



Shape Dependency of Drag

Streamlined bodies

• change the upstream uniform flow 
minimally

• delay BL separation

• create smaller wake regions

• create less pressure drag

Blunt bodies

• change the upstream uniform 
flow considerably

• cause early BL separation

• create larger wake regions

• create more pressure drag

2-45http://jalopnik.comwww.germancarforum.com

Shape Dependency of Drag

• Streamlining the following body by decreasing 𝑡/𝑐 increases the dominance of 
friction drag over pressure drag.
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𝑡

𝑐

𝑈 Total

Pressure

Friction

0          0.1        0.2         0.3        0.4        0.5

𝑡/𝑐

𝐶𝐷

Fox’s book

0.04

0.08

0.12

0
based on 
𝐴frontal

• Data is for 𝑅𝑒𝑐 = 4 × 105.

• Minimum total 𝐶𝐷 is 0.06. It is obtained around 𝑡/𝑐 = 0.25.

• This 𝐶𝐷 is equal to 20 % of the 𝐶𝐷 of a circular cylinder of the same thickness.

2-47

𝑅𝑒 Dependency of Drag

• 𝑅𝑒 dependency can be studied in three categories.

• very low 𝑅𝑒 (inertia forces are negligibly small)

• moderate 𝑅𝑒 (laminar BL)

• very high 𝑅𝑒 (turbulent BL)

• Flows with 𝑅𝑒 < 1 are called creeping flows.

• These flows are governed by a balance between pressure and viscous forces.

• For creeping flows, irrespective of the shape of the body     𝐶𝐷 ∝
1

𝑅𝑒

𝑈
𝐷

𝑈

𝐷
𝑈 𝐷 𝑈

𝐷

𝐶𝐷 =
20.4

𝑅𝑒𝐷
𝐶𝐷 =

13.6

𝑅𝑒𝐷
𝐶𝐷 =

24

𝑅𝑒𝐷
𝐶𝐷 =

22.2

𝑅𝑒𝐷
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𝑅𝑒 Dependency of Drag (cont’d)

• For objects with sharp edges 𝐶𝐷 is almost constant for 𝑅𝑒 > 1000.

• Separation always occurs at the sharp edges independent of 𝑅𝑒.

• Laminar to turbulent transition has no considerable effect.

𝑈

𝑏

𝐶𝐷 =  
2.05
1.05

 𝑏 ℎ = ∞
 𝑏 ℎ = 1

ℎ

ℎ 𝑈 𝑈 𝑈

𝐶𝐷 = 1.17 𝐶𝐷 = 1.42 𝐶𝐷 = 0.38

𝑈

𝐶𝐷 = 2.30

𝑈

𝐶𝐷 = 1.20
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Dependency of Drag to Turbulence Transition

Streamlined bodies

• drag is mostly due to friction

• transition to turbulence increases 
shear force and increases 𝐶𝐷.

Blunt bodies

• drag is mostly due to pressure

• transition to turbulence delays 
separation, decreases size of the 
wake region and decreases 𝐶𝐷.

104 105 106 107

1.0

Flat plate

𝑅𝑒 = 𝑈𝐷/𝜈

𝐶𝐷 =
𝐹𝐷

1
2𝜌𝑈2𝑏𝐷

0.1

0.01

Circle

Ellipse

𝐷

𝐷

𝐷

𝐷

𝐷/2

𝐷

0.18 𝐷

Munson’s book

width
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Drag Force on a Sphere and Cylinder

A B C

D E

No separation Steady separation bubble Oscillating Karman vortex street wake

Laminar boundary layer, 
wide turbulent wake

Turbulent boundary layer, 
narrow turbulent wake

10-1 100 101 102 103 104 105 106 107

400

B

100

10

1

0.1

𝐶𝐷

Munson’s book

A

C D

E
Sphere

Cylinder

𝐶𝐷 =
24

𝑅𝑒

𝑅𝑒𝐷
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Drag Force on a Sphere (cont’d)

• 𝑅𝑒 < 1 : 𝐶𝐷 =  24 𝑅𝑒, known as Stokes’ theory.

• 𝑅𝑒 < 1000 : 𝐶𝐷 drops with 𝑅𝑒.

At 𝑅𝑒 = 103 about 95 % of the drag is due to pressure. 

• 103 < 𝑅𝑒 < 4 × 105 : 𝐶𝐷 remains almost constant.

• 𝑅𝑒 > 4 × 105 : Boundary layer becomes turbulent. 

𝐶𝐷 drops sharply. 

• Although 𝐶𝐷 seems to be dropping in the entire 𝑅𝑒 range, 𝐹𝐷 actually increases 
with 𝑅𝑒.

• Only at the sudden drop of 𝐶𝐷 due to transition, drag force also drops, known as 
the drag crisis.

Exercise : Using the figure of the previous slide (or a higher quality one from 
another source), calculate the drag force on a golf ball sized smooth sphere of
45 mm diameter, flying in a stream of air at 20 oC at different Reynolds numbers 
and generate a “𝐹𝐷 vs. 𝑅𝑒𝐷” figure.
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Drag Force on a Sphere (cont’d)

• Potential flow theory predicts equal pressure 
on front and back sides.

• For laminar BL pressure on the front side is 
similar to that of potential theory. However, 
separation (shown with a circle) occurs at 
about 𝜃 = 90° and back pressure remains 
lower than front pressure.

• For turbulent BL pressure on the front side is 
almost the same as that of potential theory. 
Separation is delayed up to 𝜃 = 140° and 
wake is narrower. Back pressure is recovered 
better.

0     30     60      90    120   150  180

Fox’s book

𝜃 [degrees]
(measured from –x axis in CW direction)

𝐶𝑝

1.0

0.6

0.2

-0.2

-0.6

-1.0

-1.4

Potential 
theory

Laminar 
BL

Turbulent 
BL

http://sport.maths.org

𝑅𝑒 = 15000 𝑅𝑒 = 30000
with trip wire
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Drag Force on a Sphere (cont’d)

• For a smooth sphere transition of BL flow into turbulence occurs at about 4 × 105.

• For a rough sphere transition occurs at lower 𝑅𝑒 values.

4x104 105 4x105 106 4x106

0.1

𝐶𝐷 a

𝑅𝑒𝐷

0.2

0.3

0.4

0.5

0.6

b

c
d

e Relative roughness 
 𝜀 𝐷 is equal to

a ∶
b ∶
c ∶
d ∶
e ∶

that of a golf ball
0.0125
0.005
0.0015
smooth

Munson’s book
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Drag Force on a Sphere – Effect of Surface Roughness (cont’d)

• Dimples on a golf ball are carefully designed such that they                                  
“trip” the BL flow into turbulence at 𝑅𝑒 = 4 × 104 , which is                                   
precisely the 𝑅𝑒 value of a well-hit golf ball.

• A smooth golf ball can at most be hit to approximately 120 m.                                                                
A dimpled one can fly up to 265 m.

• For a smooth sphere, transition to turbulence reduces 𝐶𝐷 by a factor of 5.

• For a golf ball, transition to turbulence reduces 𝐶𝐷 by a factor of 2. But the 
important point is that the reduction takes place at a lower 𝑅𝑒, matching the 𝑅𝑒
of a flying golf ball.

Exercise : Watch the Mythbusters episode about “Fuel Efficiency of a Dimpled Car” 
and read about a “CFD Study on Golf Ball Aerodynamics”.

http://dsc.discovery.com/videos/mythbusters-dimpled-car-minimyth.html

http://www.newswise.com/articles/view/546607
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Effect of Mach Number on 𝐶𝐷

• For subsonic with low Mach number, 𝐶𝐷 is not a function of 𝑀𝑎.

• But it increases sharply after a certain 𝑀𝑎 value.

• Following figure shows the variation of 𝐶𝐷 with 𝑀𝑎 for two objects of width 𝑏. 
First object has a square cross section.

𝐶𝐷 =
𝐹𝐷

1
2 𝜌𝑈2𝑏𝐷

3.0

2.5

2.0

1.5

1.0

0.5

0
0.5 1.00

𝐷

4𝐷

𝐷

𝑀𝑎

Munson’s book

reference 
density

𝑈

𝑈

width
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Effect of Mach Number on 𝐶𝐷 (cont’d)

• For supersonic flows formation of shock waves plays an important role.

• Detached, bow shocks form in front of blunt bodies.

• Attached shocks form on the leading edge of pointed bodies. 

𝐶𝐷 =
𝐹𝐷

1
2 𝜌𝑈2 𝜋𝐷2

4

1.2

0.8

0.4

0
30

𝐷

𝑀𝑎

Munson’s book

1.6

1 2 4

𝐷

circular 
cylinder

cylinder
with sharp
nose

𝑈

𝑈

http://dsc.discovery.com/videos/mythbusters-dimpled-car-minimyth.html
http://www.newswise.com/articles/view/546607
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Effect of Mach Number on 𝐶𝐷 (cont’d)

• Schlieren images of shock waves in high speed flight of blunt and pointed bodies.

http://qdl.scs-inc.us web.mit.edu

www.nasa.gov 2-58

Effect of Froude Number on 𝐶𝐷

• For objects moving on a free surface wave drag becomes important.

• Hull shapes of ships are designed to reduce wave drag.

• Use of a bulbous bow creates extra waves that cancel out the waves generated 
by the hull and reduce wave drag considerably.

𝐶𝐷𝑤𝑎𝑣𝑒
=

𝐹𝐷

1
2𝜌𝑈2𝐿2

0.0010

0
0.30.1

𝐹𝑟 = 𝑈/ 𝐿𝑔

Munson’s book0.0015

0.0005

0.2 0.4

𝐿

𝐿

bulbous 
bow 
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Effect of Froude Number on 𝐶𝐷 (cont’d)

• Bulbous bows used for wave drag reduction.

www.cruiseradio.net

www.globalsecurity.org
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Composite Drag

• Approximate drag estimate of a complex body can be done by treating the body as 
an assembly of simpler parts. See the distributed handout.

• For example for an airplane, drag on the fuselage, wings and tail can be estimated 
separately and added.

• Interaction between various parts affect the accuracy of the analysis.

Exercise : A 95 km/h wind blows past a water tower. Estimate the wind force acting
on it (Reference: Munson).

𝑈

𝑏

𝐷𝑠

𝐷𝑐

𝑈 = 95 km/h

𝐷𝑠 = 12 m

𝐷𝑐 = 4.5 m

L= 15 m



Lift Force

• Lift is the component of the force that is perpendicular to the flow direction.

𝐶𝐿 =
𝐹𝐿

1
2

𝜌𝑈2𝐴

Planform area (𝐴 = 𝑏𝑐)
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Lift coefficient

Planform
area = 𝑏𝑐

Thickness
Span (𝑏)

Angle of 
attack (𝛼)

𝑈
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Lift Force (cont’d)

• An airfoil can generate lift because of the low and high pressures on its top and 
bottom surfaces, respectively.

• Pressure distribution over an airfoil is usually given as a 𝐶𝑝 graph.

Compressible flow 
with a shock over 
RAE 2822 airfoil

𝑀𝑎 = 0.729

𝛼 = 2.31°

Shock is at the upper
surface at about

𝑥/𝑐 = 0.55

𝐶𝑝 =
𝑝 − 𝑝∞

1
2

𝜌∞𝑈∞
2

𝑥/𝑐

-1.5

0.0       0.2        0.4       0.6       0.8        1.0

-1.0

-0.5

0.0

0.5

1.0

Top surface

Bottom surface

www.grc.nasa.gov
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Lift Force (cont’d)

• 𝐶𝐿 increases with angle of attack up to stall. 𝐶𝐷 also increases with angle of attack.

Fox’s book

As 𝛼 increases, separation point on the top 
surface moves towards the leading edge. At 
stall, separation occurs at a major portion of 
the top surface and lift drops sharply.

𝐶𝐿

1.8

𝑈

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0
0      4     8  12    16    20

𝛼

NACA 23015
airfoil

𝛼 (deg)

𝐶𝐷

0.020

0.016

0.012

0.008

0.004

0
0      4    8     12  16    20

NACA 23015
airfoil

𝛼 (deg)
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Lift Force (cont’d)

• Flaps are movable portions of a wing trailing edge that may be extended during 
landing and takeoff to increase effective wing area.

• They increase 𝐶𝐿 considerably at a given 𝛼. But they also increase 𝐶𝐷 and are not 
used during normal cruising.

Fox’s book

𝐶𝐿

3.5

-5 0 5 10 15 20

𝛼 (deg)

3.0

2.5

2.0

1.5

1.0

0.5

3

2

1
𝐶𝐿

3.5

0 0.1 0.2         0.3

𝐶𝐷

3.0

2.5

2.0

1.5

1.0

0.5

3

2

1

3. Double
slotted flap

2. Slotted flap

1. No flap
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Lift Force (cont’d)

• When the flaps are extended air escapes from high pressure region to low pressure 
region through the slots. This energizes the upper portion of the airfoil and reduces 
flow separation.

• Extending flaps also increases camber (amount of curvature), which also increases 
lift.

Çengel’s book

Wing

Slot

Flap
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• Vortex generators can also be used to avoid/delay flow separation.

Lift Force (cont’d)
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Exercise: (Çengel’s book) A commercial airplane has a total mass of 70,000 kg and a 
wing planform area of 150 m2. The plane has a cruising speed of 558 km/h and a 
cruising altitude of 12 km, where the air density is 0.312 kg/m3. The plane has 
double-slotted flaps for use during takeoff and landing, but it cruises with all flaps 
retracted. Assuming the lift and the drag characteristics of the wings can be 
approximated by NACA 23012 (given in Slide 2-64), determine

a) the minimum safe speed for takeoff and landing with and without extending 
the flaps,

b) the angle of attack to cruise steadily at the cruising altitude, and

c) the power that needs to be supplied to provide enough thrust to overcome 
wing drag.

Lift Force (cont’d)
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Induced Drag

• Wings have finite span. At the wing tips high pressure fluid at the bottom escapes 
to the low pressure upper part, causing trailing edge vortices.

• They increase the drag force known as induced drag.

• They create wake turbulence, which needs to be taken into account by air traffic 
controllers.



2-69

Lift Force (cont’d)

• Birds fly in formation to catch preceding bird’s updraft due to wingtip vortices. 
Read more about it at
http://www.sciencemag.org/news/2014/01/why-birds-fly-v-formation

• Winglets (endplates) are used to 
minimize the undesired effect of 
wingtip vortices.
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Lift on Rotating Bodies (Magnus Effect)

• Lift force is generated on rotating bodies.
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Exercise: A table tennis ball weighing 
0.0245 N with diameter 3.8 cm is hit at a 
velocity of 12 m/s with a back spin of 
angular velocity 𝜔. Determine the value of 
𝜔 such that lift and drag forces will be 
balanced and the ball will travel 
horizontally. Use the data given in the 
figure. (Reference: Munson)

𝜔 𝑈

http://www.sciencemag.org/news/2014/01/why-birds-fly-v-formation

